3,460 research outputs found

    Spinal Cord of Lamprey

    Get PDF

    Swimming Rhythm Generation in The Caudal Hindbrain of The Lamprey

    Get PDF
    The spinal cord has been well established as the site of generation of the locomotor rhythm in vertebrates, but studies have suggested that the caudal hindbrain in larval fish and amphibians can also generate locomotor rhythms. Here, we investigated whether the caudal hindbrain of the adult lamprey (Petromyzon marinus and Ichthyomyzon unicuspis) has the ability to generate the swimming rhythm. The hindbrain-spinal cord transition zone of the lamprey contains a bilateral column of somatic motoneurons that project via the spino-occipital (S-O) nerves to several muscles of the head. In the brainstem-spinal cord-muscle preparation, these muscles were found to burst and contract rhythmically with a left-right alternation when swimming activity was evoked with a brief electrical stimulation of the spinal cord. In the absence of muscles, the isolated brainstem-spinal cord preparation also produced alternating left-right bursts in S-O nerves (i.e., fictive swimming), and the S-O nerve bursts preceded the bursts occurring in the first ipsilateral spinal ventral root. After physical isolation of the S-O region using transverse cuts of the nervous system, the S-O nerves still exhibited rhythmic bursting with left-right alternation when glutamate was added to the bathing solution. We conclude that the S-O region of the lamprey contains a swimming rhythm generator that produces the leading motor nerve bursts of each swimming cycle, which then propagate down the spinal cord to produce forward swimming. The S-O region of the hindbrain-spinal cord transition zone may play a role in regulating speed, turning, and head orientation during swimming in lamprey

    Flexibility in the Patterning and Control of Axial Locomotor Networks in Lamprey

    Get PDF
    In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. These episodes of decreased synchrony can occur spontaneously, especially in the rostral spinal cord where the propagating body waves of swimming originate. Application of serotonin, an endogenous spinal neurotransmitter known to presynaptically inhibit excitatory synapses in lamprey, can promote decreased synchrony of dorsal–ventral bursting. These observations suggest the possible existence of dorsal and ventral locomotor networks with modifiable coupling strength between them. Intracellular recordings of motoneurons during locomotor activity provide some support for this model. Pairs of motoneurons innervating myotomal muscle fibers of similar ipsilateral dorsoventral location tend to have higher correlations of fast synaptic activity during fictive locomotion than do pairs of motoneurons innervating myotomes of different ipsilateral dorsoventral locations, suggesting their control by different populations of premotor interneurons. Further, these different motoneuron pools receive different patterns of excitatory and inhibitory inputs from individual reticulospinal neurons, conveyed in part by different sets of premotor interneurons. Perhaps, then, the locomotor network of the lamprey is not simply a unitary burst generator on each side of the spinal cord that activates all ipsilateral body muscles simultaneously. Instead, the burst generator on each side may comprise at least two coupled burst generators, one controlling motoneurons innervating dorsal body muscles and one controlling motoneurons innervating ventral body muscles. The coupling strength between these two ipsilateral burst generators may be modifiable and weakening when greater swimming maneuverability is required. Variable coupling of intrasegmental burst generators in the lamprey may be a precursor to the variable coupling of burst generators observed in the control of locomotion in the joints of limbed vertebrates

    The Spinobulbar System in Lamprey

    Get PDF
    Locomotor networks in the spinal cord are controlled by descending systems which in turn receive feedback signals from ascending systems about the state of the locomotor networks. In lamprey, the ascending system consists of spinobulbar neurons which convey spinal network signals to the two descending systems, the reticulospinal and vestibulospinal neurons. Previous studies showed that spinobulbar neurons consist of both ipsilaterally and contralaterally projecting cells distributed at all rostrocaudal levels of the spinal cord, though most numerous near the obex. The axons of spinobulbar neurons ascend in the ventrolateral spinal cord and brainstem to the caudal mesencephalon and within the dendritic arbors of reticulospinal and vestibulospinal neurons. Compared to mammals, the ascending system in lampreys is more direct, consisting of excitatory and inhibitory monosynaptic inputs from spinobulbar neurons to reticulospinal neurons. The spinobulbar neurons are rhythmically active during fictive locomotion, representing a wide range of timing relationships with nearby ventral root bursts including those in phase, out of phase, and active during burst transitions between opposite ventral roots. The spinobulbar neurons are not simply relay cells because they can have mutual synaptic interactions with their reticulospinal neuron targets and they can have synaptic outputs to other spinal neurons. Spinobulbar neurons not only receive locomotor inputs but also receive direct inputs from primary mechanosensory neurons. Due to the relative simplicity of the lamprey nervous system and motor control system, the spinobulbar neurons and their interactions with reticulospinal neurons may be advantageous for investigating the general organization of ascending systems in the vertebrate

    Commissural Interneurons in Rhythm Generation and Intersegmental Coupling in the Lamprey Spinal Cord

    Get PDF
    Commissural interneurons in rhythm generation and intersegmental coupling in the lamprey spinal cord. To test the necessity of spinal commissural interneurons in the generation of the swim rhythm in lamprey, longitudinal midline cuts of the isolated spinal cord preparation were made. Fictive swimming was then induced by bath perfusion with an excitatory amino acid while recording ventral root activity. When the spinal cord preparation was cut completely along the midline into two lateral hemicords, the rhythmic activity of fictive swimming was lost, usually replaced with continuous ventral root spiking. The loss of the fictive swim rhythm was not due to nonspecific damage produced by the cut because rhythmic activity was present in split regions of spinal cord when the split region was still attached to intact cord. The quality of this persistent rhythmic activity, quantified with an autocorrelation method, declined with the distance of the split spinal segment from the remaining intact spinal cord. The deterioration of the rhythm was characterized by a lengthening of burst durations and a shortening of the interburst silent phases. This pattern of deterioration suggests a loss of rhythmic inhibitory inputs. The same pattern of rhythm deterioration was seen in preparations with the rostral end of the spinal cord cut compared with those with the caudal end cut. The results of this study indicate that commissural interneurons are necessary for the generation of the swimming rhythm in the lamprey spinal cord, and the characteristic loss of the silent interburst phases of the swimming rhythm is consistent with a loss of inhibitory commissural interneurons. The results also suggest that both descending and ascending commissural interneurons are important in the generation of the swimming rhythm. The swim rhythm that persists in the split cord while still attached to an intact portion of spinal cord is thus imposed by interneurons projecting from the intact region of cord into the split region. These projections are functionally short because rhythmic activity was lost within approximately five spinal segments from the intact region of spinal cord

    Spinal Locomotor Inputs to Individually Identified Reticulospinal Neurons in the Lamprey

    Get PDF
    Locomotor feedback signals from the spinal cord to descending brain stem neurons were examined in the lamprey using the uniquely identifiable reticulospinal neurons, the Müller and Mauthner cells. The same identified reticulospinal neurons were recorded in several preparations, under reduced conditions, to address whether an identified reticulospinal neuron shows similar locomotor-related oscillation timing from animal to animal and whether these timing signals can differ significantly from other identified reticulospinal neurons. Intracellular recordings of membrane potential in identified neurons were made in an isolated brain stem-spinal cord preparation with a high-divalent cation solution on the brain stem to suppress indirect neural pathways and with d-glutamate perfusion to the spinal cord to induce fictive swimming. Under these conditions, the identified reticulospinal neurons show significant clustering of the timings of the peaks and troughs of their locomotor-related oscillations. Whereas most identified neurons oscillated in phase with locomotor bursting in ipsilateral ventral roots of the rostral spinal cord, the B1 Müller cell, which has an ipsilateral descending axon, and the Mauthner cell, which has a contralateral descending axon, both had oscillation peaks that were out of phase with the ipsilateral ventral roots. The differences in oscillation timing appear to be due to differences in synaptic input sources as shown by cross-correlations of fast synaptic activity in pairs of Müller cells. Since the main source of the locomotor input under these experimental conditions is ascending neurons in the spinal cord, these experiments suggest that individual reticulospinal neurons can receive locomotor signals from different subsets of these ascending neurons. This result may indicate that the locomotor feedback signals from the spinal locomotor networks are matched in some way to the motor output functions of the individual reticulospinal neurons, which include command signals for turning and for compensatory movements

    Contributions of Identifiable Neurons and Neuron Classes to Lamprey Vertebrate Neurobiology

    Get PDF
    Among the advantages offered by the lamprey brainstem and spinal cord for studies of the structure and function of the nervous system is the unique identifiability of several pairs of reticulospinal neurons in the brainstem. These neurons have been exploited in investigations of the patterns of sensory input to these cells and the patterns of their outputs to spinal neurons, but no doubt these cells could be used much more effectively in exploring their roles in descending control of the spinal cord. The variability of cell positions of neurons in the spinal cord has precluded the recognition of unique spinal neurons. However, classes of nerve cells can be readily defined and characterized within the lamprey spinal cord and this has led to progress in understanding the cellular and synaptic mechanisms of locomotor activity. In addition, both the identifiable reticulospinal cells and the various spinal nerve cell classes and their known synaptic interactions have been used to demonstrate the degree and specificity of regeneration within the lamprey nervous system. The lack of uniquely identifiable cells within the lamprey spinal cord has hampered progress in these areas, especially in gaining a full understanding of the locomotor network and how neuromodulation of the network is accomplished

    Quantitative Analysis of Electrotonic Structure and Membrane Properties of NMDA-Activated Lamprey Spinal Neurons

    Get PDF
    Parameter optimization methods were used to quantitatively analyze frequency-domain-voltage-clamp data of NMDA-activated lamprey spinal neurons simultaneously over a wide range of membrane potentials. A neuronal cable model was used to explicitly take into account receptors located on the dendritic trees. The driving point membrane admittance was measured from the cell soma in response to a Fourier synthesized point voltage clamp stimulus. The data were fitted to an equivalent cable model consisting of a single lumped soma compartment coupled resistively to a series of equal dendritic compartments. The model contains voltage-dependent NMDA sensitive (INMDA), slow potassium (IK), and leakage (IL) currents. Both the passive cable properties and the voltage dependence of ion channel kinetics were estimated, including the electrotonic structure of the cell, the steady-state gating characteristics, and the time constants for particular voltage- and time-dependent ionic conductances. An alternate kinetic formulation was developed that consisted of steady-state values for the gating parameters and their time constants at half-activation values as well as slopes of these parameters at half-activation. This procedure allowed independent restrictions on the magnitude and slope of both the steady-state gating variable and its associated time constant. Quantitative estimates of the voltage-dependent membrane ion conductances and their kinetic parameters were used to solve the nonlinear equations describing dynamic responses. The model accurately predicts current clamp responses and is consistent with experimentally measured TTX-resistant NMDA-induced patterned activity. In summary, an analysis method is developed that provides a pragmatic approach to quantitatively describe a nonlinear neuronal system

    Evolutionary Divergence in Developmental Strategies and Neuromodulatory Control Systems of Two Amphibian Locomotor Networks

    Get PDF
    Attempts to understand the neural mechanisms which produce behaviour must consider both prevailing sensory cues and the central cellular and synaptic changes they direct. At each level, neuromodulation can additionally shape the final output. We have investigated neuromodulation in the developing spinal motor networks in hatchling tadpoles of two closely related amphibians, Xenopus laevis and Rana temporaria to examine the subtle differences in their behaviours that could be attributed to their evolutionary divergence. At the point of hatching, both species can swim in response to a mechanosensory stimulus, however Rana embryos often display a more forceful, non-locomotory coiling behaviour. Whilst the synaptic drive that underlies these behaviours appears similar, subtle inter-specific differences in neuronal properties shape motor outputs in different ways. For example, Rana neurons express N-methyl-D-aspartate (NMDA)/serotonin (5-HT)-dependent oscillations, not present in hatchling Xenopus and many also exhibit a prominent slow spike after-hyperpolarisation. Such properties may endow the spinal circuitry of Rana with the ability to produce a more flexible range of outputs. Finally, we compare the roles of the neuromodulators 5-HT, noradrenaline (NA) and nitric oxide (NO) in shaping motor outputs. 5-HT increases burst durations during swimming in both Xenopus and Rana, but 5-HT dramatically slows the cycle period in Rana with little effect in Xenopus. Three distinct, but presumably homologous NO-containing brainstem clusters of neurons have been described, yet the effects of NO differ between species. In Xenopus, NO slows and shortens swimming in a manner similar to NA, yet in Rana NO and NA elicit the non-rhythmic coiling pattern

    Membrane Potential Oscillations in Reticulospinal and Spinobulbar Neurons During Locomotor Activity

    Get PDF
    Feedback from the spinal locomotor networks provides rhythmic modulation of the membrane potential of reticulospinal (RS) neurons during locomotor activity. To further understand the origins of this rhythmic activity, the timings of the oscillations in spinobulbar (SB) neurons of the spinal cord and in RS neurons of the posterior and middle rhombencephalic reticular nuclei were measured using intracellular microelectrode recordings in the isolated brain stem-spinal cord preparation of the lamprey. A diffusion barrier constructed just caudal to the obex allowed induction of locomotor activity in the spinal cord by bath application of an excitatory amino acid to the spinal bath. All of the ipsilaterally projecting SB neurons recorded had oscillatory membrane potentials with peak depolarizations in phase with the ipsilateral ventral root bursts, whereas the contralaterally projecting SB neurons were about evenly divided between those in phase with the ipsilateral ventral root bursts and those in phase with the contralateral bursts. In the brain stem under these conditions, 75% of RS neurons had peak depolarizations in phase with the ipsilateral ventral root bursts while the remainder had peak depolarizations during the contralateral bursts. Addition of a high-Ca2+, Mg2+ solution to the brain stem bath to reduce polysynaptic activity had little or no effect on oscillation timing in RS neurons, suggesting that direct inputs from SB neurons make a major contribution to RS neuron oscillations under these conditions. Under normal conditions when the brain is participating in the generation of locomotor activity, these spinal inputs will be integrated with other inputs to RS neurons
    • …
    corecore